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Data scientists have applied various analytic models and techniques to address the
oft-cited problems of large volume, high velocity data rates and diversity in semantics.
Such approaches have traditionally employed analytic techniques in a streaming or batch
processing paradigm. This paper presents CRUCIBLE, a first-in-class framework for the
analysis of large-scale datasets that exploits both streaming and batch paradigms in a uni-
fied manner. The CRUCIBLE framework includes a domain specific language for describing
analyses as a set of communicating sequential processes, a common runtime model for
analytic execution in multiple streamed and batch environments, and an approach to auto-
mating the management of cell-level security labelling that is applied uniformly across
runtimes. This paper shows the applicability of CRUCIBLE to a variety of state-of-the-art
analytic environments, and compares a range of runtime models for their scalability and
performance against a series of native implementations. The work demonstrates the signif-
icant impact of runtime model selection, including improvements of between 2.3� and
480� between runtime models, with an average performance gap of just 14� between
CRUCIBLE and a suite of equivalent native implementations.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

To derive insight and provide value to organisations, data scientists must make sense of a greater volume and variety of
data than ever before. In recent years this challenge has motivated significant advances in data analytics, ranging from
streaming analysis engines such as IBM’s InfoSphere Streams [1], Backtype’s Storm [2] or Yahoo!’s S4 [3], to an ecosystem
of products built on the MapReduce [4] framework.

When data specialists set out to perform analyses they are typically faced with a decision: they can opt to receive con-
tinuous insight but limit analytic capabilities to a functional or agent-oriented streaming architecture, or make use of a bulk
data paradigm but risk batch analyses taking hours or even days to complete. It is, of course, possible to maintain systems
that target streamed and batch paradigms separately, though this is less desirable than having a single system with the
semantics to account for those paradigms in a unified manner. The need to support multiple methodologies presents a fur-
ther challenge; ensuring analyses are correct and equivalent across platforms. These issues are further complicated by
deployment scenarios involving multi-tenant cloud systems or environments with complex access control requirements.

Our research seeks to alleviate many of the issues highlighted above through the development of CRUCIBLE, a framework
consisting of (i) a domain specific language (DSL) for describing analyses as a set of communicating sequential processes, (ii)
a common runtime model for analytic execution in multiple streamed and batch environments, and (iii) an approach which
automates the management of cell-level security labelling uniformly across runtimes. In particular, this paper demonstrates
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how CRUCIBLE (named after the containers used in chemistry for high-energy reactions) can be used across multiple data
sources to perform highly parallel distributed analyses of data simultaneously in streaming and batch paradigms, efficiently
delivering integrated results whilst making best use of existing cloud infrastructure.

The specific contributions of this paper are as follows:

� A high-level DSL and suite of runtime environments, adhering to a common runtime model, that provide consistent exe-
cution semantics across on- and off-line data. This is the first DSL designed specifically to target the execution of on- and
off-line analytics with equal precedence.
� The development of a new primitive in the developed DSL that permits a single analytic to be run equivalently over multi-

ple data sources: locally, over Accumulo data, and over files in the Hadoop Distributed File System (HDFS).
� A novel framework for the semi-automated management of cell-level security, applied consistently across runtime envi-

ronments, enabling the management of data visibility in on- and off-line analysis.
� An evaluation of the performance of CRUCIBLE on a set of best-in-class runtime environments, demonstrating framework

optimisations that result in an average performance gap of just 14�when compared to a suite of native implementations.

The remainder of this paper is structured as follows: Section 2 provides a summary of related work. Section 3 introduces
the CRUCIBLE system and describes its abstract execution model. Section 4 presents a performance analysis and discussion of
the CRUCIBLE runtimes and associated optimisations. Finally, Sections 5 and 6 provide avenues for further research and con-
clude the paper.
2. Related work

Large-scale data warehousing technologies abound in the literature, many of which are based on Google’s MapReduce [4]
and Bigtable [5], such as Hadoop [6] and HBase[7], as well as NSA’s Accumulo[8], which added cell-level security, increased
fault tolerance (FATE), and a novel server-side processing paradigm [9]. Tools such as Google’s Drill [10], and the Apache
Software Foundation implementation Dremel [11], promise SQL-like interactive querying over these Bigtable-backed frame-
works. Hive [12] and Pig [13] both aim to permit definition of analytics over arbitrarily formatted data in Hadoop [6], while
Cascading [14] takes a slightly more engineer-centric approach to definition of analytics over Hadoop.

Some of the more common projects in the streaming analytics space are IBM’s InfoSphere Streams [1], and the open source
Storm [2], developed by BackType and now an Apache Incubator project. Others include Yahoo!’s S4 [3] (also in the Apache
Incubator), which offers an agent-based programming model. This makes deployment scenarios and performance prediction
somewhat more challenging than Storm and Streams, which offer a lower-level abstraction. Esper [15] provides a cross-
platform API for Java and .NET, and Microsoft’s StreamInsight [16] product offers tight integration with Microsoft SQL Server.

Most of these technologies facilitate execution of an analytic over a single paradigm, be it online or offline. Recently,
researchers have begun to translate offline analytics into an online paradigm. SAMOA [17] aims to enable Machine Learning
using a streaming processing paradigm to both validate and update models in near-real-time. AT&T Research, as part of their
Darkstar project [18], have constructed a hybrid stream data warehouse, DataDepot [19]. This uses online techniques to per-
form analysis on data as it arrives at the data warehouse, updating the contents of the bulk data store in the process. The
closest research to CRUCIBLE to date has been in IBM DEDUCE [20], which defines code for MapReduce using SPADE (Stream
Processing Application Declarative Engine), the programming language used in early versions of InfoSphere Streams. This
permits a unified programming model (e.g., allowing use of common operators), but does not offer any direct execution
equivalence between a MapReduce job and an equivalent Streams SPADE job. Furthermore, SPADE is now deprecated in
favour of SPL (Stream Processing Language).

CRUCIBLE builds on the most desirable attributes of these approaches in order to offer a single framework for developing
secure analytics to be deployed at scale on state of the art multi-tenancy on- and off-line data processing platforms. It offers a
similar programming model and approach to task parallelism as the likes of Storm and Streams, while offering consistent
execution semantics across both on- and off-line data. It includes a semi-automated framework for management of security
labels, and permits the application of these labels equivalently across data sources.
3. CRUCIBLE system

In order to facilitate the creation of advanced analytics for on- and off-line distributed execution, the CRUCIBLE DSL makes
use of a higher level language abstraction than typical analytic frameworks, such as [2], [11], or [14]. This enables a degree of
portability that is not typically achievable under other schemes; an engineer may write their analytic once, in a concise high-
level language, and execute across a variety of paradigms without knowledge of runtime-specific implementation details. In
addition, the user is afforded the ability to exploit an array of best-in-class runtime models for the execution of CRUCIBLE code.

Furthermore, this approach seeks to free domain specialists from concerns of correctness and security. The CRUCIBLE
runtimes are responsible for ensuring that analytics are run with equivalent execution semantics, through adherence to
CRUCIBLE’s execution model, thus providing assurances of cross-platform correctness. The domain-specific nature of the
CRUCIBLE language permits the user a greater degree of confidence that the analytic they intend is the analytic they have
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written. As well as providing assurances regarding functional correctness, the automated application of security labelling
frees the user from having to ensure they have not violated the security caveats associated with the data they are using.

A risk organisations face when creating a suite of analytics is the constantly evolving state-of-the-art in analytic frame-
works. CRUCIBLE can help to mitigate this risk, as the ‘‘porting’’ of an entire suite of analytics becomes a matter of introduc-
ing a new CRUCIBLE runtime for the new framework – provided the runtime adheres to CRUCIBLE’s execution model,
portability of correctness can be assured with confidence.

3.1. CRUCIBLE DSL

CRUCIBLE’s DSL is built on the XText [21] language framework. It makes use of XBase, which is an embeddable version of
the XTend JVM (Java Virtual Machine) language. CRUCIBLE’s DSL provides a syntactic framework for modelling Processing
Elements, using XBase for the processing element (PE) logic.

CRUCIBLE transpiles a topology (a collection of connected PEs) into idiomatic Java based on the CRUCIBLE PE Model (see
Fig. 1). This is in contrast to many other JVM languages, such as [22], which directly compile into unreadable bytecode. Com-
piler support is used to provide syntactic sugar for accessing global shared state and the security labelling mechanism, which
are discussed in more detail in Section 3.4.

At a high level, a CRUCIBLE analytic (such as in Listing 1) is structured similarly to a Java code file; it consists of a package
declaration, a set of imports, and then one or more classes. In the CRUCIBLE DSL, each process models a class, with a name
and an optional superclass. These classes are referred to as Processing Elements, or PEs for short. The body of a process is
divided into a set of unordered blocks:

� conf – Compile-time configuration constants. The calculation of these may involve an arbitrary expression.
� state – Runtime mutable state; shared globally between instances of this PE. These variables may be declared local, in

which case no global state is utilised for their storage (see Section 3.3).
� outputs – Declaration of the named output ports from the process.
� input – A block of key/value pairs mapping the qualified name of an output (in the form ProcessName.OutputName) to

a block of code to execute upon arrival of a tuple from that port.
Listing 1. An Example CRUCIBLE Topology fragment, counting the frequency of characters in the input.
Please cite this article in press as: P. Coetzee et al., Towards unified secure on- and off-line analytics at scale, Parallel Comput. (2014),
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Fig. 1. Components of the CRUCIBLE system. Entries in italics are external dependencies.
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3.2. Message passing

CRUCIBLE PEs communicate using message passing; a call to OutputName.emit(. . .) causes all subscribers to that
output to receive the same message. No guarantees are given about the ordering of messages interleaved from
different sources. Messages are emitted as a set of key-value pairs, encoded as a single tuple. At compile time
CRUCIBLE performs type inference on all of the emit calls in the topology to generate a correctly typed and named
receive method interface on each subscriber; the key of an item in the tuple is used as the parameter name on
the method.

3.3. Global synchronisation & state

CRUCIBLE’s global synchronisation and shared state components make use of the GlobalStateProvider and Locking-

Provider implementations which are injected at runtime. As discussed, state variables exist in global scope if they are not
marked local. Thus, if multiple instances of a PE are run simultaneously, they will share any updates to their state; these
changes are made automatically. This mechanism is applied without any guarantees about transactional integrity, which in
limited circumstances is acceptable, e.g., when sampling for ‘a recent value’.

In those circumstances which require distributed locking, an atomic extension method is provided to take a lock on a
given state element, and apply the given closure to the locked state. The behaviour of this is similar to Java’s synchronized
keyword, with two key distinctions. The first of these is that the locking is guaranteed across multiple instances of a PE
within a job, even across multiple hosts. The second distinction is that the atomic method may be applied to multiple
objects by locking a list of variables, e.g., #[x, y, z].atomic[. . .], in which case all locks are acquired before invoking
the closure. A fixed ordering of locking and unlocking is applied, as well as a protocol lock, to ensure that interleaved requests
across critical regions do not deadlock.

3.4. Security labelling

CRUCIBLE’s Security Labelling system is motivated by the need to cope with complex access control requirements
in multi-tenancy environments. For example, the provenance or classification of data may need to be tracked on a
cell level in order to determine the visibility of a datum for a user. Ensuring that these visibilities are tracked con-
sistently is a challenge that requires a great deal of attention to detail throughout the evolution of an analytic
system.

CRUCIBLE’s labelling protocol is built on the concept of cell-level visibility expressions, similar to those described by Bell
and La Padula [23]. An expression is given as a conjunction of disjunctions across named labels. For example, the expression
‘‘A&ðBkCÞ’’ requires that a user is authorised to read the A label, as well as either B or C. If they lack sufficient authorisation,
they should not even be aware of the existence of that cell.

In practise, this concept is implemented by declaring an empty security label for every variable in the system. This label is
accessible to the user by calling the label extension method on a variable. A user may add to a label using the += operator.
For example, the label associated with the x variable is expanded by either calling x.label += "A | B" (literal expansion), or
x.label += y.label (expansion by label reference). More formally, consider a label function k, and a label expansion func-
tion �:
Please
http:/
kðaÞ : Label for identifier a

�ða; bÞ : k1ðaÞ ¼ fk0ðaÞ; kðbÞg
ð1Þ
Labelling of object-oriented method invocation makes the assumption that the receiver’s state may be mutated by the sup-
plied arguments. Therefore:
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Please
http:/
c:fooðd; e; f Þ )
�ðc; dÞ
�ðc; eÞ
�ðc; f Þ

8><
>:

k1ðcÞ ¼ fk0ðcÞ; kðdÞ; kðeÞ; kðf Þg

ð2Þ
Assignment of a value to a non-final Java variable (e.g., g = h, where h is any expression; not to be confused with
g.label = h.label) requires clearing the contents of its label prior to expansion, as accumulated state is discarded:
g ¼ h) k1ðgÞ ¼ ; ð3Þ
If the right expression (h) contains any identifiers, expansion must occur;
8ðiÞ 2 h; identifierðiÞ ) �ðg; iÞ
k2ðgÞ ¼ fkði0Þ . . . kðinÞg

ð4Þ
As objects may contain mutable state, when a label for x expands to encompass y, and y is later expanded, x’s label must
include the additions to y:
ð5Þ
3.4.1. Application of labelling
This labelling requires support from the CRUCIBLE compiler to transform invocations of the tuple emission method,

emit(Pair<String,?> . . .tuple), into invocations of the form emit(Pair<SecurityLabel, Pair<String,?>>
. . .tuple). Note that in the Java type system this has the same type erasure as the original method. Concordantly, when gen-
erating the signature for a receive method, the compiler interleaves parameters with their labels. Thus, an interface of
(String, Integer) instead becomes (Security Label, String, SecurityLabel, Integer). Listing 2 shows a simple
CRUCIBLE fragment, designed to illustrate the automated application of security labelling in practice, while Listing 3 shows
what this code would transpile to after processing by the CRUCIBLE compiler. Note in this listing how the state declaration of
g 3. Fragment of transpiled code from Listing 2.

g 2. CRUCIBLE fragment for calculating the mean of results from Listing 1.
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sum is given an instance variable, $_sum, and a SecurityLabel, sum$label. Furthermore, the labelling rules described
above are applied consistently in the code: as sum is modified using the value of key, the sum$label is expanded to encom-
pass the instance of key$label passed from the upstream PE (line 22, per Rule 2). Similarly, when the value of sum is cleared
(Listing 2 Line 7), sum$label is also cleared (Listing 3 Line 16), per Rule 3. As the assignment is to an absolute value with no
associated label, no further expansion is required at this point (as in Rule 4).

Thus, if a sequence of tuples were emitted to the Mean PE from Filter.Keys such as the following, the given output
would occur from Mean.RunningAverage (the below table uses [..] notation to denote the security label associated with
a value). In this example, keys are labelled as to whether they are a consonant (‘‘C’’), or a vowel (‘‘V’’). The total seen is always
labelled ‘‘S’’, for Sum.
P
h

Filter.Keys
Fig. 2. CRUCIBLE model composition diagram, showing the composition of the core model

lease cite this article in press as: P. Coetzee et al., Towards unified secure on- and
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?

(white) and the runtime

off-line analytics at s
Mean.RunningAverage
done
 key
 total
 mean
false []
 G [C]
 98 [S]
 0.72 [C & S]

false []
 H [C]
 99 [S]
 1.44 [C & S]

false []
 I [V]
 100 [S]
 0.73 [V & S]

false []
 J [C]
 101 [S]
 1.46 [V & C & S]
It is important to note that due to CRUCIBLE’s close integration with the JVM, this mechanism should not be considered
secure for arbitrary untrusted code; it aims only to assist the security-conscious engineer by making it easier to comply with
security protocols than to ignore them.

3.5. CRUCIBLE runtimes

CRUCIBLE offers three key runtime environments for execution of analytics transpiled from the DSL source. Fig. 2 shows
how classes in the model interact; instances of many of these classes (shaded) are injected at runtime using [24], permitting
the behaviour of the topology to be integrated with the relevant runtime engine without changes or specialisation in the user
code.

3.5.1. Standalone processing
The first, and simplest, runtime environment is designed for easy local testing of a CRUCIBLE topology, without any need

for a distributed infrastructure. This Standalone environment simply executes a given topology locally, in a single JVM, rely-
ing heavily on Java’s multithreading capabilities. Locking and global state are provided based on this in-JVM assumption.

Message passing is performed entirely in-memory, using a singleton Dispatcher implementation with a blocking con-
current queue providing backpressure [25] in the event that some PEs are slower than others. This prevents the topology
from using an excessive amount of memory.

3.5.2. On-line processing
IBM’s InfoSphere Streams product forms the basis of CRUCIBLE’s streaming (on-line) runtime engine. An extension to the

CRUCIBLE DSL compiler generates a complete SPL (IBM’s Streams Processing Language) project from the given topology. This
injectable components (grey).
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project can be imported into InfoSphere Streams Studio; it consists of the required project infrastructure (including classpath
dependencies), and a single SPL Main Composite describing the topology. Each SPL PE in Streams is an instance of
the CruciblePE class. This class handles invocation of the receive$. . . tuple methods, dispatch between Streams and
the CruciblePEs, and tuple serialisation.

There is a one-to-one mapping between tuples emitted in CRUCIBLE and tuples emitted in Streams. Each key in a
CRUCIBLE tuple has a defined field in a Streams tuple, and all keys are transmitted with each emission. Keys are interleaved
with their security labels, such that the label for a key always precedes it. Tuple values are converted between Streams and
CRUCIBLE using an injected serialisation provider; the default implementation of this leverages Kryo for time and space
efficiency [26,27], but it would be trivial to add, for example, a Protocol Buffers-based implementation if interoperability
with external systems were required. Security Labels are not serialised through Kryo, in order to facilitate their inspection
by debug tooling on the Streams instance. Security Labels are written as rstring values, while all others are serialised
as a list<int8> (representing an immutable array of bytes).

Each of these CruciblePE instances could potentially be scheduled into separate JVMs running on different hosts,
according to the behaviour of the Streams deployment manager. Manual editing of the SPL, e.g., to use SPLMM (SPL
Mixed Mode, using Perl as a preprocessor), can be used to split a single PE across multiple hosts. The injectable global
synchronisation primitives discussed in Section 3.3 must be enabled on the runtime to facilitate this form of
data-parallelism.

3.5.3. Off-line processing
The mapping from CRUCIBLE’s execution model to Accumulo for off-line processing is more involved. In order to exploit

the data locality and inherent parallelism available in HDFS, while maintaining the level of continuous insight offered by
Streams, the Accumulo runtime makes use of Accumulo Iterators [9]. An Iterator may scan multiple tablets in parallel,
and will stream ordered results to the Scanner which invoked the iterator. CRUCIBLE makes use of this paradigm by spawn-
ing a CrucibleIterator for each PE in the topology, along with a multithreaded Scanner to consume results. Each
CrucibleIterator may be instantiated, destroyed, and re-created repeatedly as the scan progresses through the data
store.

Each CrucibleIterator is assigned to its own table, named after the UUID of the Job and the PE to which it refers. Val-
ues map onto an Accumulo Key by using a timestamp for the Row ID, the Source PE of a tuple as Column Qualifier, and the
emitted item’s key as Column Key. Column Visibility and Security Label are mapped directly onto their Accumulo equiva-
lents, making efficient use of native constructs.

In this way, the CrucibleIterator can invoke the correct receive method on a PE, by collating all (key, value, label)
triples of a given RowID. By mapping CRUCIBLE Security Labels onto Accumulo Visibilities, all message passing data (and
final results) are persisted to HDFS with their correct labels: external Accumulo clients may read that state, provided they
posess the correct set of Authorization(s).

CRUCIBLE’s AccumuloDispatcher takes tuples emitted by a PE, and writes them to the tables of each subscriber to that
stream, for the relevant CrucibleIterators to process in parallel. The final component is the multithreaded Scanner,
which restarts from the last key scanned, thus ensuring that the Accumulo-backed job fully processes all tuples in all tables.
This flow is presented in Fig. 3, for clarity.
Fig. 3. CRUCIBLE Accumulo runtime message dispatch, demonstrating how Scanners are used to pull data through a collection of custom Iterators to
analyse data sharded across Accumulo Tablets.
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3.6. Standard library

The last CRUCIBLE component is the standard library. This includes the components necessary for operation of the
above runtimes, along with a set of base PE implementations to simplify creation of CRUCIBLE topologies. These pro-
vide examples of data ingest from a variety of sources, such as from the APIs of Flickr and Twitter, along with prim-
itives to read and write file data. An XPath PE is valuable for extracting data from XML. Work is underway to expand
this library to include operators for parallel JOINs, Bloom-Filters, and serialisation to/from common data formats such
as JSON.

This library is implemented in standard Java, and no special infrastructure is required to extend it. It is intended that users
of CRUCIBLE may extend this library with custom PEs, or publish their own, simply by writing Java which conforms to a given
interface, and making it available on the classpath. For single-use Java operators this may even be done within the analytic’s
Eclipse IDE project – the compiler will load and integrate the operator automatically.

4. CRUCIBLE runtime optimisation

Section 3.5 described the implementation of the three core CRUCIBLE runtimes. The work in [28] demonstrated near
linear scaling of their performance over growing input sizes. However, this work also demonstrated that they lacked suf-
ficiently strong performance when compared to hand-written implementations. A series of significant enhancements and
optimisations have been implemented in each of these runtimes, in order to improve time-to-solution performance. The
experimental results described below were collected on the same specification of system described for the original
CRUCIBLE experimental results, using the same benchmark. These results are, therefore, directly comparable. This simple
CRUCIBLE benchmark topology was written to count the frequency of letter occurrence in a dictionary (akin to Listing 1),
limited to the top N results, where N is the problem size. There is a key distinction between CRUCIBLE and the native
implementations here; as the native environments lack support for security labelling, only the CRUCIBLE runtimes track
the per-cell security labels. The results were collected on a small development cluster, consisting of three Accumulo Tablet
Servers, one Master, and three Streams nodes. Each node hosts two dual-core 3.0 GHz Intel Xeon 5160 CPUs, 8 GB RAM,
and 2x1GbE interfaces.

4.1. Standalone processing

The standalone processing environment provides an ideal test bed for general optimisations to the CRUCIBLE framework,
due to its lack of complex IPC. Fig. 4 shows the proportion of the runtime spent in various functional sections of the code for
each of the standalone runtime models implemented. Figs. 4 and 9 were generated using an instrumented JVM for the max-
imum problem size. They omit the warm-up time, in order to illustrate the proportional function runtimes for an analytic
during the bulk of its execution. It is important to note that these data do not capture the proportion of time spent blocked
or context switching, and are thus not sufficient on their own for comparing the absolute performance of the runtimes.
Fig. 4. Function runtime breakdown across Standalone Dispatchers.
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The original version of the standalone runtime (Standalone v1) spends over 75% of its wall time building strings,
either naïvely for logging purposes or for analytic output. Additionally, approximately 7:5% of the runtime is spent exam-
ining PE configuration and building data structures to invoke the topology’s PEs. A combination of smarter log manage-
ment, and better code generation, permits the Standalone v2 entry to spend a significantly higher proportion of its
time (� 40% rather than � 4%) performing the actual analysis. This new code generation offers a set of guarantees to
the CRUCIBLE runtime that permit further compile-time reasoning about the values that are emitted and received. For
example, it is now guaranteed that parameters on the emit and receive interfaces of a given PE are equivalently ordered
when the code is generated. This allows the runtime to perform far less manipulation and reasoning about its PE config-
uration in memory when invoking a PE.

With a more optimised Standalone environment, the importance of thread utilisation becomes increasingly apparent.
Fig. 5 shows how the set of workers in the Standalone v2 dispatcher (top chart) spend a significant amount of time switching
in and out of a runnable state; none of the Worker threads (responsible for receiving submitted tuples and invoking the
relevant PE) show full CPU utilisation. Two further experiments were conducted based on these results. The first of these,
Fig. 5. Thread utilisation in the Standalone, Backpressure, and Disruptor Dispatchers respectively.

Please cite this article in press as: P. Coetzee et al., Towards unified secure on- and off-line analytics at scale, Parallel Comput. (2014),
http://dx.doi.org/10.1016/j.parco.2014.07.004

http://dx.doi.org/10.1016/j.parco.2014.07.004


10 P. Coetzee et al. / Parallel Computing xxx (2014) xxx–xxx
illustrated in the middle chart of Fig. 5, introduced the use of backpressure [25] to slow down PEs that were producing faster
than downstream PEs could consume (thus reducing the probability of resource starvation). This shows much better thread
utilisation, but does not make adequate use of the multi-core architecture on which it runs.

The final, and best performing, standalone Dispatcher implementation made use of the LMAX Disruptor [29], detailed in
the bottom chart of Fig. 5. It is noteworthy that the Disruptor Dispatcher scheduled each PE to its own thread consistently,
and significantly reduced the amount of context switching by permitting the threads to run truly concurrently whenever
there was data available. The superior thread utilisation of the Disruptor Dispatcher is borne out in the runtime results of
Fig. 6, demonstrating a speedup of over 16� of a Disruptor-based runtime model over the original Standalone model.
Whereas the original model suffered a performance penalty of 526� over the native implementation, the Disruptor model
is only 32� slower.
4.2. On-line processing

In order to better understand the costs involved in the existing CRUCIBLE SPL execution model, an SPL topology was
instrumented to measure the latency introduced by tuple I/O. The Native SPL results show the latency in passing a message
Fig. 6. Scalability comparison of CRUCIBLE Standalone runtimes and native implementations.

Fig. 7. SPL Tuple I/O Instrumentation.
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Fig. 8. CRUCIBLE Code Generation Hierarchy.
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into or out of a PE written entirely in SPL. JNI (the Java Native Interface) does not involve any CRUCIBLE code; it simply
measures the latency introduced by causing tuples to be passed from the Streams SPL interface into the Streams Java interface.
This is a necessary precondition for execution of CRUCIBLE’s Java target code. The final results include the SPL and JNI laten-
cies, as well as those introduced by transcoding and converting data types between Streams Java tuples and tuples in CRUCI-
BLE, as well as execution of the PE invocation logic. The results of these measurements are summarised in Fig. 7; the JNI
bridging process is responsible for a considerable proportion of the latency in invoking a CRUCIBLE PE.

In order to minimise the impact of Streams’ JNI latency, it is necessary to improve CRUCIBLE’s generation of the SPL target
to make best possible use of native SPL operators. For example, many of the CRUCIBLE library functions exist natively within
SPL (e.g., file sources and sinks, or timed ‘‘beacon’’ emitters) as higher performance variants of the Java code. By introducing a
new pluggable code generation architecture, CRUCIBLE enables library code developers to hook into the generation engine
and create runtime specific variants of a given PE, provided they ensure that the generated set of runtime-specific PEs are
properly typed and named.

This pluggable code generation system offers each generator for a pair of PE class/runtime environment the oppor-
tunity to generate code for a given instance of a PE by simply being loaded on the classpath for the IDE. The generators
are sought using their annotation: @Generate(target = SomePE.class, type = "SPL") indicates that the annotated
Fig. 9. Function runtime breakdown across On- and Off-line Dispatchers.
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Fig. 10. Scalability Comparison of CRUCIBLE Online Runtimes and Native Implementations.
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class is a generator for SomePE in the SPL runtime. The integration of the various code generation components in the
new architecture is highlighted in Fig. 8. The existing CRUCIBLE Java code generation is performed by the same JVM
Model Inferrer as previously; the new architecture simply adds the pluggable generators on the bottom layer. For
example, Listing 4 shows the original output of the CRUCIBLE SPL generator; note the application of a CruciblePE

instance to each node in the SPL graph. Listing 5 shows the same analytic compiled under the new code generation
mechanism. The type signatures are identical, but native code is instead generated to support the file source and sink
PEs from the CRUCIBLE topology without altering the semantics of the tuple processing. Fig. 9 details how the use of some
simple SPL primitives (notably file source and sink operators) has impacted the breakdown of function runtime in Streams.

Fig. 10 illustrates the 2.3� speedup that more advanced SPL generation has allowed on the existing CRUCIBLE
benchmark – the performance of CRUCIBLE transpiled for InfoSphere Streams, once 22� slower than a native
implementation, is now under 10� slower. The nature of these improvements is such that they can offer even greater
speedups as the topology becomes more complex, utilising more SPL library functions.

Listing 4. CRUCIBLE Streams v1 SPL Generation.
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Listing 5. CRUCIBLE Streams v2 SPL Generation.
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4.3. Off-line processing
Fig. 11 reveals problems with interfacing Accumulo with the original runtime model: even after the optimisations
described in Section 3.5.1, the large number of Tablet Read-Ahead threads show drastic under-utilisation for the workload
(see Fig. 3 for an overview of how the PollingScanner instances interact with Accumulo’s tablet servers; these Tablet Read
threads host the custom CRUCIBLE Iterators described in the figure). Furthermore, the process of swapping an Accumulo Iter-
ator out of a read-ahead thread is such that it forces a rebuild of the iterator’s state when it is swapped back in. The impact of
this can be clearly seen the Accumulo v2 column of Fig. 9; a vanishingly small proportion of time is spent processing the
actual analytic, with the vast majority being spent in invocation methods – including Iterator construction and state
retrieval.

These results reveal that the Accumulo Iterator model is incompatible with performing heavy computation and message
passing using the Accumulo table interfaces at scale. Instead, these optimisations introduce (i) the use of Apache Spark [30]
for execution of CRUCIBLE analytics over data in either Accumulo or native HDFS. In support of this, CRUCIBLE introduces (ii)
a new library PE with close integration with the Spark Code Generator: the DataSource. A CRUCIBLE DataSource is an
abstraction of the concept of a source, identified by a URN, with a fixed set of outputs per tuple. The precise code used to
retrieve tuples from the source are determined by the runtime that is loaded; it may be an Accumulo table, a file in HDFS,
or a streaming source, e.g., a network socket.

The CRUCIBLE Spark runtime pulls data from the relevant DataSource through a series of Spark map operations to apply
the directed graph of CRUCIBLE PEs to the full dataset. The precise scheduling of these operations is determined optimally by
the Spark runtime engine. Each map operation emits an RDD (Resilient Distributed Dataset; an abstraction for a collection of
data managed by Spark) of pairs <Output Name, Tuple Data>, which is split along the key to create the relevant source of
tuples for the next stage(s) of the analytic. This unique DataSource-based approach has the added advantage of providing
an alternative execution paradigm for Standalone mode (the functional runtime breakdown of which is detailed in Fig. 4), as
Spark may be run over in-memory datasets without the backing of a Hadoop RDD.
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Fig. 11. Thread utilisation in the Accumulo (v2) Dispatcher.

Fig. 12. Scalability comparison of CRUCIBLE offline runtimes and native implementations.
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Fig. 9 demonstrates how superior the function breakdown is for the Accumulo-Spark runtime model compared to the ori-
ginal Accumulo Iterator interface, and Fig. 12 shows the significant performance enhancement in terms of time-to-solution
that this offers; over 480� from the original Accumulo Iterator model to running Spark over Accumulo. Furthermore, the
CRUCIBLE Spark runtime with the DataSource abstraction for the first time enables the processing of arbitrary Hadoop files
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and text files in an equivalent yet scalable fashion using CRUCIBLE. At higher scales, CRUCIBLE’s Spark-HDFS environment
can even be seen to outperform a native implementation making use of the more expressive Spark builtins. Performing bulk
analysis through the use of Accumulo Iterators with CRUCIBLE was approximately 10� slower than the equivalent native
implementation; with Spark on HDFS files, this is now almost 1.2� faster than the native implementation used.

5. Future work

There are a number of avenues to be explored in future work. Ultimately, we intend to improve CRUCIBLE’s usability
through improved interfaces for planning and development of analytics. Alongside that, we intend to consider two key areas
of future research; the CRUCIBLE DSL, and the runtimes.

In enhancing the CRUCIBLE DSL, we plan to introduce a number of new language features to further enhance CRUCIBLE’s
applicability and code reuse. For example, through the addition of compound PEs (a PE formed from a CRUCIBLE topology)
and runtime PE reuse, it becomes possible to encode a commonly used set of PEs as a single PE in the topology, and reuse the
results of its computation across multiple jobs. In this way, only the subsets of analyses which are different across given
topologies must be computed separately, significantly enhancing the overall utilisation of cluster resources. In a similar vein,
the capability to subscribe to results published from one job in another will permit a manually specified form of these effi-
ciencies. Additionally, we plan to enhance in-IDE debug tooling, through the use of mock data sources, probes, and visuali-
sations of the flow of data and propagation of security labels.

In addition to these language and IDE improvements, one promising avenue for future work is the investigation of novel
approaches to the composition of analytic jobs in CRUCIBLE. Currently, this requires the manual authoring of program code.
We intend to investigate further opportunities offered by CRUCIBLE’s high-level abstraction to permit the creation of jobs by
less technically competent domain experts.

In order to improve the runtime environments, we propose to investigate a number of alternative compilation strategies
for topologies, in order to enable their execution of alternative architectures. This will enable workload-based optimisation
for architecture selection - this could directly impact both deployment and procurement decisions. There are also plans to
investigate PE Fusion and Fission Techniques to enhance data-level parallelism.

6. Conclusions

This paper has detailed the development of CRUCIBLE, a framework consisting of a DSL for describing analyses as a set of
communicating sequential processes, a common runtime model for analytic execution in multiple streamed and batch envi-
ronments, and an approach to automating the management of cell-level security labelling that is applied uniformly across
runtimes. This work has served to (i) validate the approach that CRUCIBLE takes in transpiling a DSL for execution in a unified
manner across a range on- and off-line runtime environments, as well as (ii) forming an investigation into techniques for
deployment across these architectures. The work has demonstrated (iii) the application of analysis written in CRUCIBLE
to data sources including HDFS files, Accumulo tables, and traditional flat files. The results presented demonstrate that
the selection of runtime model for execution of CRUCIBLE topologies is critical; making a difference of up to 480x. The
net result of these optimisations is (iv) a suite of best-in-class runtime models with equivalent execution semantics and a
14� performance penalty over the equivalent native hand-written implementations. The paper has demonstrated a number
of valuable capabilities as a result of being based on a DSL; the tight integration of key language features, particularly secu-
rity labelling and atomic operations, enables the implementation of sample analytics in one sixth the amount of code as the
native implementations – a substantial improvement in engineering time, cost, and risk.

Further information on CRUCIBLE, including all available documentation, can be found at http://go.warwick.ac.uk/
crucible.
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